

MIG FENI36

Classification

Without

Description & Applications

Solid wire filling a Ferro-Nickel alloy used for GMAW of alloys like Invar. Materials having a very low thermal expansion.

Main applications: Molds for composite, cladding of natural gas tanks.

Typical Chemical Composition (%)

	С	Si	Mn	Ni	Р	S	Fe
Min							
Max	Not classified						
Type	0.01	0.10	0.30	36.0	0.010	0.010	Rem.

All Weld Metal Mechanical Properties

	R _{p0.2} (MPa)	R_m (MPa)	A ₅ (%)	KV	(J)
Min	-	-	-	-	-
Max					
Type	300	400	28	-	-

Welding Current & Instructions

Welding mode	Wire Ø	Welding p	Shiolding Gas	
welaling mode	(mm)	Current (A)	Voltage (V)	Shielding Gas
GMAW = +	0.8 1.0 1.2 1.6	70 - 180 80 - 220 150 - 320 220 - 380	18 - 26 18 - 28 22 - 32 24 - 34	ISO 14175: I1 (100% Ar) I3 (Ar+10-30%He) Z (Ar+He+H+CO ₂) 15-20 l/min

FT En-MI20-200901